ASYMMETRIC SYNTHESIS OF CIS-2-SUBSTITUTED CYCLOHEXANAMINES WITH HIGH OPTICAL PURITY

A.W. Frahm⁺ and G. Knupp Institut für Pharmazeutische Chemie der Universität Kreuzbergweg 26, 5300 Bonn 1, W-Germany

Abstract: Asymmetric reductive amination of racemic 2-substituted cyclohexanones (R= methyl, ethyl, phenyl, benzyl) using optically active 1-phenylethylamines yields optically active cis-cyclohexanamines.

The nonenzymatic asymmetric synthesis of open-chain amines and amino acids from the corresponding ketones or keto acids is well documented ¹⁻⁵. Hiskey ⁶ and later on Harada ⁷ were the first who synthesized optically active amino acids from keto acids by hydrogenolytic asymmetric transamination in good optical yield. Barfknecht ⁸ and Standridge⁹ showed the general applicability of this reaction in the synthesis of psychotomimetic phenyl-isopropylamines and analogues of mescaline (optical purities between 95 and 100%).

We report now the high-yield asymmetric synthesis of optically active cis-2substituted cyclohexanamines <u>5a-d</u> from racemic 2-substituted ketones <u>la-d</u> (Scheme 1), which is, by our knowledge, the first asymmetric synthesis of carbocyclic amines from corresponding cyclanones.

It is remarkable, that the hydrogenation leads to optically pure cis-products (enantiomeric excess > 92%), thus running under both highly diastereoselective and enantioselective control.

Reaction of racemic cyclohexanones <u>la-d</u> with either R-(+)- or S-(-)-l-phenylethylamine in a Dean-Stark-apparatus yields azomethines <u>2a-d</u>, which are immediately hydrogenated over Raney-nickel in a Parr-shaker at 5 bar. The resulting secondary amines are isolated as hydrochlorides <u>3a-d</u> in good chemical yield (Table 1).

Com- pound	Starting amine	Yield ^b [%]	m.p. [°c]	[\$\] ¹³ (c=1.2/EtOH)
<u>3a</u>	+	88	279-80	+ 52.8
	-	00	280-81	- 52.9
<u>3b</u>	+	00	245-47	+ 52.9
	-	90	245-47	- 53.3
<u>30</u>	+	10 C	d	
	-	49	d	
<u>3d</u>	+	80	256-59	+ 85.7
	-	00	257-59	- 83.7

TABLE 1: PROPERTIES OF SECONDARY AMINE-HYDROCHLORIDES 3a-d ^a

^a spectroscopical data and microanalyses are in agreement with structures proposed; ^b based on starting ketones; ^c yield of N-(2'phenylcyclohexan)-1-phenylethylaminehydrochlorid <u>3c</u> is significantly lower than that of the other amines because of partly isomerisation of azomethine <u>2c</u> to the corresponding enamine, which is not hydrogenated under the reaction conditions; ^d liquid.

Without further purification $\underline{3a-d}$ are hydrogenolized with palladium-on-charcoal catalyst (5%) at 5 bar and 45° C in a Parr-shaker to yield optically active 2-substituted cyclohexanamine-hydrochlorides $\underline{4a-d}$ in good chemical and optical yield (Table 2). Hydrochlorides are liberated to free bases $\underline{5a-d}$ by aqueous sodium hydroxidequantitatively for spectroscopical purposes only (fast carbonisation occurs!).

Com- pou nd	Starting amine	Yield ^b [%]	m.p. [°c]	[~_] ²³ (c=1.3/EtOH)	enantiomeric excess [%]
<u>4a</u>	+	78	234-35	+ 8.0	96
	_		234 - 35	- 8.1	97
<u>4b</u>	+	79	193-95	- 0.5	92
	-		193-94	+ 0.6	94
<u>4c</u>	+	42	248	- 106.6	94
	-		247-48	+ 104.4	92
<u>4d</u>	+	68	272-74	+ 14.3	99
	-	00	272-74	- 14.0	98

TABLE 2: PROPERCIES OF PRIMARY AMINE-HYDROCHLORIDES 4a-d a

^a spectroscopical data and microanalyses are in agreement with structures proposed and literature data ²¹⁻²³; ^b overall yield

The purity of the secondary and primary amines was checked by chromatographical and spectroscopical methods. Neither TLC and HPLC nor 1 H- and 13 C-NMR showed any traces of the trans-amines. The optical purity of the corresponding enantiomeres was checked by HPLC. For this purpose <u>4a-d</u> were acylated by the method of Dale 10 with optical pure (+)-2-methoxy-2-trifluormethyl-phenylacetic acid chloride (MTPA-Cl) to the diastereomeric amides. In all cases the enantiomeric excess was higher than 92%.

Under above conditions only the thermodynamically less stable cis-compounds are isolated. This is consistent with Barton's rule ¹¹, although it is known, that under more vigorous hydrogenation conditions (i.e. 80 bar, 100° C) always the thermodynamically more stable products dominate in comparable cases ^{12,13}.

With exception of compound $\frac{4c}{4c}$, cis configurated compounds $\frac{3a-d}{4a-d}$ and $\frac{4a-d}{4a-d}$ are synthesized for the first time in its enantiomeric forms 14 . Although racemic and optically active trans-2-methyl-cyclohexanamines are well known $^{15-17}$, from the corresponding cis-compounds only the racemic modification is documented $^{18-20}$.

The absolute configuration of the synthesized compounds is not yet established. CD- and X-ray-analyses are in progress and will be published later.

In forth-coming publications we shall show the result of our investigations, which deal with cyclanones of different ring sizes and R-groups in changing positions.

We thank the Fonds der Chemischen Industrie and the BASF-Ludwigshafen for supporting this work.

REFERENCES

- 1. F. Knoop and C. Martius, Zeitschr. Physiol. Chem. 258, 238 (1939).
- 2. J.B. Longenecker and E.E. Snell, Proc. Nat. U.S. Acad. Sci. <u>42</u>, 221 (1956).
- 3. S. Akabori, S. Sakurai, Y. Izumi and Y. Fujii, Nature 178, 323 (1956).
- Cervinka, V. Suchan, O.Kotynek and V. Dudek, Collect. Czech. Chem. Commun. 30, 2484 (1965).
- 5. F. Weinges and G. Graab, Chem. Ztg. Chem. App. 94, 728 (1970).
- 6. R.G. Hiskey and R.C. Northrop, J. Am. Chem. Soc. 83, 4798 (1962).
- 7. K. Harada, Nature 212, 1571 (1966).
- D.E. Nichols, C.F. Barfknecht, D.B. Rusterholz, F. Benington and R.D. Morin, J. Med. Chem. 19, 480 (1973).
- 9. R.T. Standridge, H.G. Howell, J.A. Gylys, R.A. Partyka and A.P. Shulgin, J. Med. Chem. 19, 1400 (1976).
- 10. J.A. Dale, D.L. Dull and H.S. Mosher, J. Org. Chem. 34, 2543 (1969).
- 11. D.H.R. Barton, J. Chem. Soc. 1953, 1027.
- M. Murakami, K. Suzuki, M. Fujishige and J.-W. Kang, Nippon Kagaku Zasshi, 85, 235 (1964); C.A. 61 (1965), 13408.
- L.K. Freidlin, E.F. Litvin, V.V. Yakubenok and L.P. Pivonenkova, Izv. Akad. Nauk SSSR, Ser. Khim. 1973, 850; C.A. 79 (1973), 52904.
- 14. L. Verbit and H.C. Price, J. Am. Chem. Soc. 94, 5143 (1972).
- 15. M. Mousseron and P. Froger, Bull. Soc. Chem. Fr. 14, 843 (1947)
- 16. H. Nohira, K. Ehara and A. Miyashita, Bull. Chem. Soc. Jpn. 43, 2230 (1970).
- 17. W. Hückel and K.D. Thomas, Justus Liebigs Ann. Chem. <u>645</u>, 177 (1961).
- 18. Z.J. Vejdelek, M. Rajsner and M. Protiva, Collect. Czech. Chem. Commun. <u>25</u>, 245 (1960); for comparison we repeated this investigation and have found, that the postulated cis-2-methyl-cyclohexanamine is a mixture of trans and cis product in the ratio of 64:36.
- 19. H. Feltkamp, Arch. Pharm. 295, 764 (1962).
- 20. H. Booth, G.C. Gidley and N.C. Franklin, Tetrahedron 23, 2421 (1967).
- 21. H. Feltkamp and K.D. Thomas, Justus Liebigs Ann. Chem. 683, 49 (1965).
- 22. W. Naegele and D. Wendisch, Org. Magn. Reson. 2, 439 (1970).
- 23. D. Dodrell, I. Burfitt and N.V. Riggs, Aust. J. Chem. 28, 369 (1975).

(Received in Germany 6 April 1981)